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Abstract
The properties of electron transport through an effective closed three-level structure in an
asymmetric double quantum dot system are studied. It is demonstrated that the relative phase
between two laser fields can strongly modulate the current through the system, which is similar
to the magnetic flux controlled coherent transport in an Aharnov–Bohm interferometer. Two
different transport regimes are considered, one is the regime of the chemical potential μR of the
right lead between the ground state ε2 and the excited state ε3 of the right dot, the other is the
regime of μR < ε2. In both regimes, the current can be tuned to zero by appropriately choosing
the phases of the driving lasers, which can be used as an optically controlled current switch. In
the regime of μR < ε2, the current peak approaches zero because the electron is nearly trapped
into the ground state of the left quantum dot. While in the regime of ε2 < μR < ε3, I = 0
occurs when the electron is trapped in the dark state, a superposition of the two quantum dot
ground states.

1. Introduction

Ultrasmall semiconductor quantum dots (QDs), also called
‘artificial atoms’, are analogous to real atoms and possess
many intrinsic characteristics of atomic physics [1]. Since
the features of the dots are controllable, the study of external
influences on QDs has become an important topic [2–7].
To date, the effect of time-varying external fields on the
transport in QD devices has attracted considerable attention
and many interesting phenomena ranging from photon-assisted
tunneling [3, 4] to charge or spin pumping [5–7] have been
reported. In experiment, the transport spectroscopy has been
measured in coupled QDs under microwave field [4]. Recently,
it has become desirable to transfer concepts from quantum
optics to semiconductor electronics and spintronics [8].
For example, the Dicke effect [9], quantum beats [10],
electromagnetically induced transparency (EIT) [11, 12],
optical bistability [13], and so on, have been proposed and
performed in a transport QD device by measuring its current
and noise properties. Sánchez [14] has studied the resonance
fluorescence and shot noise in a two-level QD, which is
embedded in a phonon bath and irradiated by a time-dependent
ac field. Different combinations of sub-and super-Poissonian
electron and phonon Fano factors are shown in various

regimes. Brandes and Renzoni [11] have proposed a transport
mechanism through tunnel-coupled quantum dots based on the
coherent population trapping effect (CPT). It is found that
the CPT effect in such a device can be used to determine
interdot dephasing rates and provide a sensitive control of a
current switch. Liao et al [15] investigated electron tunneling
through a three-level system in an asymmetric double quantum
dot irradiated by an external field. Very recently Chu [12]
suggested a possible scheme to realize a three-level structure
in a QD system.

On the other hand, optical coherent phenomena and
phase control in multilevel systems have been well studied
in quantum optics in the last two decades [16–20]. Buckle
et al [17] pointed out that in three or four level systems with
closed interaction contour, changing the relative phase of the
laser fields has a critical effect upon the temporary or stationary
atomic populations. Phase controlled quantum interference in
two-color atomic photoionization was reported [21]. Nakajima
et al [22] presented a theory of modulating ionization by
controlling the phases of incident laser fields. Up to
now, the controlling quantum dynamics of matter with light
by coherent phase is still a fascinating subject of broad
scientific and technology [23–25]. For example, very recently,
coherent phase control of resonance mediated three-photon
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Figure 1. (a) Schematic view of two coupled two-level QD system where the two external fields �′
1 and �2 irradiate on the device and lead to

the transitions |1〉 ↔ |4〉 and |2〉 ↔ |3〉 respectively. And the frequency ω1 of the first laser �′
1 is assumed to be far detuned from the

transition |1〉 ↔ |4〉. (b) An effective three-level QD system where the laser field with frequency ω2 and Rabi frequency �2 drives the

transition |2〉 ↔ |3〉, and the other laser field with frequency ω1 and coupling constant �1(= �′
1t2

�34
) interacts with the transition |1〉 ↔ |3〉.

absorption [23] and phase control of a coherent superposition
of degenerate states [24, 25] were studied both theoretically
and experimentally [23]. Besides, the Aharnov–Bohm (AB)
effect as the most well-known and most extensively studied
in solid state physics [26] has attracted considerable attention.
In an AB ring interferometer, magnetic-flux-dependent current
can be observed due to the two-path interference through
the two arms. With the development of nanotechnologies,
QDs are usually embedded in one or both arms to study the
Fano effect and related physics, e.g. the problem of coherent
transport through tunnel-coupled QD systems [27–29]. In the
QD device, the coherent phase is usually formed and controlled
by an external magnetic flux. However, from the view of
experiment, it is technologically difficult to confine a strong
magnetic field to such a small region of QDs, this may be
an obstacle for future quantum information and computation.
Therefore, it is desirable to replace the magnetic field by a more
easily controllable source of the coherent phase. On the other
hand, abundant research has been performed to investigate the
interaction between the light and the nanostructures [30–32].
It is a natural idea to use the laser field phase to control the
coherent transport in the QD-based devices.

In the present work, we propose a coherent field phase
controlled transport based on an asymmetric double quantum
dot system, in which an effective three-level � closed structure
can be formed. In section 2 we propose a coupled QD device
driven by two laser fields and give the theoretical framework.
How to form the closed system is discussed and the effective
model Hamiltonian is derived by adiabatic elimination. In
section 3 we study the phase-dependent transport in such
a solid-based device. We separately discuss two different
transport regimes, i.e. the chemical potential in the right
reservoir lies below both energy levels of the right dot and
between them. Finally, section 4 gives the conclusion.

2. Theoretical framework

2.1. Adiabatic elimination and the effective Hamiltonian

Figure 1(a) shows the system and the expected level
configuration. The device is composed of two coupled QDs
and two normal metal leads, where the size of the left dot

is much smaller than the right one. In this case the energy
spacing in the left dot is larger than that of the right one
(�1/a2 and a the length of dot). The coupled quantum dot
device considered here for fabrication can be formed by a
heterostructure consisting of different semiconductor materials
(GaAs/AlGaAs). Metal gates are deposited on top of a
GaAs/AlGaAs heterostructure with a 2DEG about 100 nm
below the surface [1]. Considering the Coulomb blockade
regime, only a single electron is allowed in the two-dot system.
Thus there exist five states in the effective Hilbert space of
the electronic system: |0〉 (no electron in both dots), |1〉 (one
electron in the ground state of the left dot), |4〉 (one electron
in the excited state of the left dot), |2〉 (one electron in the
ground state of the right dot), and |3〉 (one electron in the
excited state of the right dot), respectively corresponding to
|0〉 = |N1, N2, N3, N4〉, |1〉 = |N1 + 1, N2, N3, N4〉, |4〉 =
|N1, N2, N3, N4 + 1〉, |2〉 = |N1, N2 + 1, N3, N4〉, and |3〉 =
|N1, N2, N3 + 1, N4〉. Here we only consider the transport in
the sequential tunneling regime and there is no spin-rotation
symmetry breaking, thus the spin degeneracy is not involved in
this case. The Hamiltonian which describes the above model
can be written as

H = HD + HT + HL1 + HL2. (1)

Here the Hamiltonian HD representing the energy of QDs is

HD =
4∑

i=1

εi |i〉〈i |, (2)

where |i〉〈i | (i = 1, 2, 3, 4) are the energy operators of the QD
four states. The Hamiltonian HT describing the system of two
dots connected to two leads can be written as

HT =
∑

k;α∈L ,R

εα
k c†

αkcαk +
∑

k;β=1,4

(VLkc†
Lksβ + h.c.)

+
∑

k;β=2,3

(VRkc†
Rksβ + h.c.), (3)

where cαk(c
†
αk) is the annihilation (creation) operator in lead

α(∈ L, R) with wavevector k. The first term describes the
energy of the electron reservoirs. The last two terms stand for
the tunneling coupling between the QDs and the reservoirs with
the operators sβ = |0〉〈β| (β = 1, 2, 3, 4), and the coupling
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strength Vαk for α (=L and R). In the dipole and rotating-
wave approximations, the Hamiltonian HL1 which describes
the interaction between electron and external field �′

1 in the
left dot and the tunneling between the two excited states in two
QDs is expressed as

HL1 = �′
1

2
(|4〉〈1|e−i(ω1t+θ1) + |1〉〈4|ei(ω1t+θ1))

+ t2(|4〉〈3| + |3〉〈4|). (4)

The Hamiltonian HL2 which describes the interaction between
electron and external field �2 in the right dot and the tunneling
between the two ground states in two QDs is

HL2 = �2

2
(|3〉〈2|e−i(ω2t+θ2) + |2〉〈3|ei(ω2t+θ2))

+ t0(|1〉〈2| + |2〉〈1|). (5)

The field �′
1 with frequency ω1 and phase θ1 drives the

transition |1〉 ↔ |4〉 in the left QD while the field �2 with
frequency ω2 is applied to drive the transition |2〉 ↔ |3〉 in the
right QD. The tunnel matrix elements t0 and t2 determine the
strength of the tunneling process and are mainly determined by
the interdot distance, whose typical value is 200–500 nm [1].
For the present scheme, the driven lasers are required to be
well-separated, so that the respective laser fields couple only
with their intended QD. The laser wavelength is of the order
of 500–2000 nm and it is well known that the minimum spot
size in the far-field regime is equal to the wavelength divided
by the numerical aperture of the optical system. Advanced
optical and semiconductor techniques are required to realize
the scheme. Fortunately, it has been pointed out that lenses
made out of flat slabs of left-handed materials (materials with
negative permittivity and permeability) [33] could overcome
the diffraction limit [34]. Many experiments [35] have shown
that lens made of metamaterials can focus light onto an
area smaller than a square wavelength. Besides, we may
use relatively large quantum dots in our scheme. In the
former experiments, large quantum dots with diameters of
400–700 nm were fabricated to study the Kondo effect at
low temperatures [36]. Therefore, the present scheme may
be realized in the near future by applying a left-handed
metamaterial lens to focus light onto an area smaller than a
square wavelength or fabricating larger quantum dots.

Considering that the detuning |ω1−(ε4−ε1)| is sufficiently
large, the electron in |1〉 absorbs a photon irradiated by the first
laser and it immediately tunnels out from |4〉 to |3〉, that is, the
electron is hardly able to populate the state |4〉, which can be
adiabatically eliminated [37]. Therefore the two-step electron
transition |1〉 ↔ |4〉 ↔ |3〉 can be effectively treated as a
transition between |1〉 and |3〉, and described by an effective
Hamiltonian

H ′
L1

= �1

2
|3〉〈1|e−i(ω1t+θ1) + h.c., (6)

where �1 = �′
1t2/�34 is the effective coupling constant. Here

we define �i j = εi − ε j (i �= j = 1, 2, 3, 4). The detailed
derivation of the effective Hamiltonian H ′

L1
is given in the

appendix. Therefore the effective Hamiltonian of the whole
system can be rewritten as

Heff = H0 + HI1 + HI2 . (7)

Here, the Hamiltonian H0 describes the electron reservoir
contributions and the dot–lead coupling,

H0 =
∑

k;α∈L ,R

εα
k c†

αkcαk +
∑

k

(VLkc†
Lks1 + VRkc†

Rks2

+ VRkc†
Rks3 + h.c.). (8)

The Hamiltonian HI1 represents the energy of QDs and the
tunneling between the ground states in two dots,

HI1 =
3∑

i=1

εi |i〉〈i | + t0(|1〉〈2| + |2〉〈1|). (9)

The term HI2 which describes the interaction between QDs and
driving lasers can be written as

HI2 = �1

2

[|3〉〈1|e−i(ω1t+θ1) + |1〉〈3|ei(ω1t+θ1)
]

+ �2

2

[|3〉〈2|e−i(ω2t+θ2) + |2〉〈3|ei(ω2t+θ2)
]
. (10)

The field �1 drives the transition between the ground state of
the left dot (|1〉) and the excited state of the right dot (|3〉)
while the field �2 is applied to drive the transition between
the ground state of the left dot (|2〉) and the excited state
of the left dot (|3〉). The three-level loop is completed by
tunneling between the two ground states |1〉 and |2〉 as sketched
in figure 1(b).

2.2. Rate equation

To indicate the laser phase controlled coherent transport, we
present a set of rate equations [38–40] to study the quantum
transport in such a device in the sequential regime. In
order to describe the transport through the QD, the master
equations or ‘quantum’ version of the rate equations were first
proposed by Nazarov [39], and later derived microscopically
from the Schrödinger equation directly [40] and from the
von Neumann equation and superoperators [41], respectively.
It gives a good description about the sequential tunneling
for weak coupling between the dot and the leads [38].
Actually at low temperature, higher-order transport, such
as the cotunneling process and Kondo effect, plays an
important role in the transport properties. Especially in
the Kondo regime, the electron transport is through the
spin–spin exchange interaction between the electrons in the
central region and in the leads. To deal with these high-
order processes, more sophisticated treatment should be
considered, e.g. the equation of motion method [42], non-
crossing approximation [43], or numerical renormalization
group calculation [44]. Furthermore, the temperature taken
in the calculation is of the order of 0.1
 (
 is the dot–lead
coupling strength and is of the order of 1–10 μeV), which is
much higher than the Kondo temperature. Therefore, the effect
of the Kondo correlation on transport is not considered here.

Under the assumption of weak coupling between the QD
and the leads, and applying the wide-band limit in the two
leads, electronic transport through this system in the sequential
regime can be described by the quantum rate equations for the
dynamical evolution of the density matrix elements, ρ(t) [38].
In the case of infinite Coulomb repulsion, the statistical
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expectations of the diagonal elements of the density matrix,
ρi (i = 0, 1, 2, 3), give the occupation probabilities of the
states of the dot. ρ0 is the probability of finding the dot
unoccupied, ρ1,2,3 are the probabilities of finding the lower
level occupied in the left dot, the lower and upper level
occupied in the right dot, respectively. The off-diagonal
density matrix elements describe the coherent superposition of
the three levels.

Starting from the effective Hamiltonian Heff, we can
obtain a set of time-dependent motion equations as follows

ρ̇1 = −(
+
L + 
−

L )ρ1 − 
+
L ρ2 − 
+

L ρ3 + it0ρ12 − it0ρ
∗
12

+ i
�1

2
e−iθ1 ρ̃13 − i

�1

2
eiθ1 ρ̃∗

13 + 
+
L ,

ρ̇2 = −
+
R2

ρ1 − (
+
R2

+ 
−
R2

)ρ2 − 
+
R2

ρ3 − it0ρ12

+ it0ρ
∗
12 + i

�2

2
e−iθ2 ρ̃23 − i

�2

2
eiθ2 ρ̃∗

23 + 
+
R2

,

ρ̇3 = −
+
R3

ρ1 − 
+
R3

ρ2 − (
+
R3

+ 
−
R3

)ρ3 − i
�1

2
e−iθ1 ρ̃13

+ i
�1

2
eiθ1 ρ̃∗

13 − i
�2

2
e−iθ2 ρ̃23 + i

�2

2
eiθ2 ρ̃∗

23 + 
+
R3

,

˙̃ρ12 = i t0ρ1 − it0ρ2 − [
1
2 (
−

L + 
−
R2

) + i�
]
ρ12

+ i
�2

2
e−iθ2 ρ̃13 − i

�1

2
eiθ1 ρ̃∗

23,

˙̃ρ13 = i
�1

2
eiθ1ρ1 − i

�1

2
eiθ1ρ3 + i

�2

2
eiθ2ρ12

− [
1
2 (


−
L + 
−

R3) + i�
]
ρ̃13 − it0ρ̃23,

˙̃ρ23 = i
�2

2
eiθ2ρ2 − i

�2

2
eiθ2ρ3 + i

�1

2
eiθ1ρ∗

12

− it0ρ̃13 − [
1
2 (
−

R2
+ 
−

R3
) − i�

]
ρ̃23, (11)

where ρ̃3 j = ρ3 j eiωt ( j = 1, 2) are slowly varying off-diagonal
matrix elements of the reduced density operator of the double
dots. Here, for simplicity, we assume ω1 = ω2 = ω and the
laser �2 is resonant with the transition |2〉 ↔ |3〉. But the laser
�1 is not resonant with the transition |1〉 ↔ |3〉. Therefore the
states |1〉 and |2〉 are non-degenerate and the energy differences
between them are defined by � (= ε1 − ε2). The temperature-
dependent tunneling rates are defined as 
±

j = ∑
α 
α j f ±

α (ε j ),
where f +

α (ω) = [1 + e(ω−μα)/kB T ]−1 is the Fermi distribution
function, f −

α (ω) = 1 − f +
α (ω), and μα is the chemical

potential in lead α. In the wide-band limit, the tunneling rates
between the reservoirs and the dots are assumed to be energy
independent: 
α = 2π

∑
k |V α

k |δ(εα − εk). Here, 
+
j (
−

j )
describes the tunneling rate of electrons into (out from) the QD.

We can solve equation (11) at the stationary case and
subsequently obtain the current (in units of e) flowing from
the lead L to the QD in the sequential regime [38],

I = 
+
L ρ0 − 
−

L ρ1. (12)

Due to the current conservation, the stationary current (in units
of e) flowing from the QD to the lead R can be written as [38]

I = 
−
R2

ρ2 + 
−
R3

ρ3 − 
+
R2

ρ0 − 
+
R3

ρ0. (13)

In the sequential tunneling regime, the transport is mainly
determined by the relative height between the chemical

potential and the dot levels. From equations (11)–(13), the
current can be expressed by the tunneling magnitude 
±

i ,
which is only determined by the sign of (μα − εi ) at low
temperature but is less related to the bias voltage (μL − μR).
Here we consider that the chemical potential in the left lead is
much higher than the energy level of state |1〉 and thus 
+

L 	 


(
 is taken as the energy unit), which means the electrons in the
left lead can tunnel into the left dot but the reverse process is
almost prohibited (i.e. 
−

L 	 0). Therefore, both the laser and
the bias voltage can have a strong effect on the non-equilibrium
transport in the present device.

3. Results and discussions

Except for the temperature, the electron transport in the present
system can be modulated by the following five parameters:
the energy difference �(= ε1 − ε2) between two ground
states, laser intensities �1, �2, direct tunneling strength t0 and
the relative phases θi (i = 1, 2). We mainly focus on the
modulation of the phase θi for different sets of (�, t0,�1,�2)

and discuss two different regions with respect to the location
of the chemical potential μR, i.e. μR < ε2 and ε2 < μR < ε3,
respectively. For simplicity we assume that the frequencies of
two coherent fields are equal and the dot-lead tunneling meets

L = 
R2 = 
R3 = 
 and 
 is taken as the energy unit in the
following discussion.

3.1. μR < ε2

We first consider the case of μR < ε2, where the tunneling
rates 
+

L = 
−
R2

= 
−
R3

≈ 
 and 
−
L = 
+

R2
= 
+

R3
≈ 0

at low temperature. In this case, electrons can tunnel out from
both the excited and ground state of the right QD. According to
equations (12) and (13), the expression of the stationary current
can be simplified as

I = 
ρ0 = 
(ρ3 + ρ2). (14)

Figure 2 shows the results for the current I as a function of the
energy difference � for different Rabi frequencies �1; here we
have chosen �2 = 20, t0 = 0.5, and θ1 = θ2 = 0. It can
be seen that the current exhibits a two-peak structure and the
two peaks are located at � = ±�2/2. With the increase of �1

from 0.0 to 1.6, the position of the two peaks holds the line,
while the structure of the two-peak changes from symmetric
to asymmetric type. In particular, the left peak disappears
when �1 is equal to 2t0. In order to make these phenomena
clear, we discuss the system in a convenient basis for the
Hilbert space constructed by the unperturbed state |1〉 and
dressed states |±〉. The dressed states |±〉, originating from
the interaction of the right QD with the strong coherent laser
field �2, can be easily derived from the eigenvalue equation,
�2
2 (e−iθ2 |3〉〈2| + eiθ2 |2〉〈3|)|±〉 = λ±|±〉, with eigenvalues

λ± = ±�2/2 and eigenstates |±〉 = 1√
2
(|3〉 ± eiθ2 |2〉). In the

basis of |1〉 and |±〉, the Hamiltonian HI1 + HI2 in the rotating
frame of the laser frequency ω2 becomes

HI1 + HI2 = �|1〉〈1| + �2

2
(|+〉〈+| − |−〉〈−|)

+ (g+|1〉〈+| + g−|1〉〈−| + h.c.), (15)

4
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Figure 2. Current I as a function of energy difference � at
θ1 = θ2 = 0, �2 = 20, and t0 = 0.5 for different Rabi frequencies
�1 = 0.0 (solid line), �1 = 1.0 (dash–dotted line), and �1 = 1.6
(dotted line). All coefficients are scaled with 
.

here g+ = 1
2
√

2
(�1eiθ1 + 2t0eiθ2), and g− = 1

2
√

2
(�1eiθ1 −

2t0eiθ2). In the interaction picture, the above Hamiltonian reads
as

H̃I = g+|1〉〈+|ei(�− �2
2 )t + g−|1〉〈−|ei(�+ �2

2 )t + h.c. (16)

If we assume the laser field �2 is a strong coherent laser
field, i.e. �2 � |g±|, then when we tune the energy
difference � to be equal to �2/2, the transition |1〉 ↔ |+〉
is resonant but |1〉 ↔ |−〉 is far-off-resonant. Therefore we
can ignore the highly oscillating terms g−|1〉〈−|ei(�+ �2

2 )t +
h.c. in equation (16) within the effective rotating-wave
approximation. That is to say, in the case of � = �2/2,
the electron can only transmit from state |1〉 to state |+〉 and
consequently tunnel out from state |+〉 and then a peak appears
at � = �2/2. However, there are two transition channels
from states |1〉 to |+〉, one is the electron transition driven
by the laser field �1 with the strength of �1eiθ1/2

√
2, the

other is the single electron tunneling determined by the term
of t0eiθ2/

√
2. These two channels interfere with each other and

the interference can be constructive or destructive depending
on the relative phases θ1 and θ2. On the contrary, if the energy
difference � is tuned to −�2/2, the main channels of the
electron transport are from states |1〉 to |−〉 and subsequently
tunnel out from state |−〉 because |1〉 ↔ |−〉 is resonant and
|1〉 → |+〉 is far-off-resonant. Therefore a peak appears at
� = −�2/2. There also exist two transition channels from
states |1〉 and |−〉 and these two channels interfere with each
other. One is the electron transition driven by the laser field �1

with the strength of �1eiθ1/2
√

2, the other is the single electron
tunneling determined by the term of t0ei(θ2+π)/

√
2. As shown

in figure 2, for �1 = 0 two symmetric peaks appear in the
current spectrum with the driving coherent field �2 as depicted
in [15]. There only exists one transition channel, i.e, the single
electron tunneling between the states |±〉 and |1〉 without the
coherent field �1 and the corresponding strength are equal,

Figure 3. Current I as a function of phase θ2 at θ1 = 0.0, t0 = 2.0,
and (a) �2 = 5.0, � = 0 for different Rabi frequencies �1;
(b) �1 = �2 = 5.0 for different energy differences �. All
coefficients are scaled with 
.

i.e. |g+| = |g−| = t0/
√

2, so the two symmetric peaks appear
around � = ±�2/2. However, if �1 �= 0, we can get
g± = 1

2
√

2
(�1 ± 2t0) for θ1 = θ2 = 0, which indicates that the

constructive interference between the two transition channels
between the states |1〉 and |+〉, and destructive interference
among the other two transition channels between the states
|1〉 and |−〉 happen. Therefore for θ1 = θ2 = 0, t0 = 0.5,
�1 = 1.6, |g+| = 0.919, and |g−| = 0.212, the currents
exhibit asymmetric peaks and the height of the right peak is
higher than the left one as shown by a dotted line in figure 2.
Furthermore, the left peak disappears corresponding to the
point where the current is almost equal to zero when �1 =
2t0 = 1 as shown by a dash–dotted line in figure 2. The reason
is that there exists complete destructive interference between
the two channels between states |−〉 and |1〉 so that g− = 0.
In the case of I = 0, the electron is trapped in the state |1〉.
The trapped electron cannot tunnel out of the ground state of
the left QD. Moreover, this state is protected from incoming
electrons because of the Coulomb blockade. In the double dot
case discussed here, the peaks of current can be nearly tuned to
zero because of a complete destructive interference determined
by relative phases θ1 and θ2. This effect may serve as an optical
phase controlled current switch [11].

We also notice that the current curves depend on the phase
θ2 for different laser field strength �1 and energy difference �

in the case of θ1 = 0 respectively as shown in figures 3(a)
and (b). The current oscillates with the phase θ2, which
demonstrates that the laser field phase can act as a magnetic-
flux-type AB phase. It should be noticed that the laser phase
is used here to control the coherent transport, which seems
to play the same role as the magnetic flux in an AB ring.
However, it is quite different from the AB interferometer. Here
the interaction between the electrons and the laser is time-
dependent, while in an AB ring the non-equilibrium is only
due to the bias voltage. But they have the same physical
reason why both of them exhibit phase mediated quantum
interference. With the decrease of �1 from �1 = �2, the
current modulation �I (= Imax − Imin) increases. When �1
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Figure 4. Dependence of the current I on Rabi frequency �2 at
θ1 = 0.0, θ2 = π

2 , � = 0.0, (a) �1 = �2 for different tunneling
strength t0; (b) t0 = 0.5, �1 = r�2 for different r . All coefficients
are scaled with 
.

decreases more, �I begins to decrease and reach zero at �1 =
0 as shown in figure 3(a). That is to say, the phase θ2 cannot
control the current without the field �1. This is because the
closed loop is broken and we find the current expression as
4t2

0 (2t2
0 +
2 +�2

2)
[24t4
0 + (
2 +�2

2)
2 + 2t2

0 (7
2 + 3�2
2)]−1

for �1 = 0, which is independent of the relative phase. In
the case of �1 = �2, the oscillation period changes from π

to 2π when the energy difference � changes from � = 0 to
� �= 0. Furthermore the minimum value of I decreases with
the increase of � as shown in figure 3(b).

Let us now turn our attention to the effect of the tunneling
strength t0 on the current. Figure 4 shows the dependence
of the current on the Rabi frequency �2 for various coupling
strengths t0 and laser asymmetry r(= �1/�2). In the strong
field limit, I approaches a certain value 3/8
 for �1 = �2 and
the resonance peak still appears near �2 = 2t0. Furthermore,
as shown in figure 4(b), r can modulate the current behavior in
quite a different way in the strong field limit. In this case, the
current can be simplified as

I 	
[

4r 2 + 4r 4 + r 6

4 + 8r 2 + 9r 4 + 3r 6
+ 1

4 + 8r 2 + 9r 4 + 3r 6

×
(

t0
�2

)2 ]

, (17)

from which one can prove that I decreases with the increase of
�2 and approaches 0.375
 for r = 1 in the limit of �2 � 
,
as shown by a dot-dashed line in figure 4(b).

3.2. ε2 < μR < ε3

Next, we will discuss current transport in the regime of ε2 <

μR < ε3 as shown in figure 1(b) where the tunneling rates

+

L = 
+
R2

= 
−
R3

≈ 
 and 
−
L = 
−

R2
= 
+

R3
≈ 0 at

low temperature. According to equations (12) and (13), the
expression current can be simplified as

I = 
ρ0 = 
(ρ3 − ρ0). (18)

Figure 5. Dependence of current I on change of phase θ2 (a) for
different Rabi frequencies �1 with θ1 = 0, � = 0, t0 = 2.0, and
�2 = 5.0; (b) for different energy differences � with θ1 = 0,
t0 = 2.0, �1 = 3.0, and �2 = 5.0. All coefficients are scaled with 
.

In this case, the electron can tunnel out to the right lead only
from the excited state |3〉. From equations (11) and (18), the
concise expressions of steady state current are obtained as

I =

4{(�2

2+�2
1)

2(�2

4 +t2
0 )−[2t0�1�2 cos θ2+�

2 (�2
2−�2

1)]2}
f (�1,�2, 
, t0, θ2,�)

,

(19)

where f (�1,�2, 
, t0, θ2,�) is the function of the parameters
�1, �2, 
, t0, θ2, and � and we assume θ1 = 0 for simplicity.
Figure 5(a) shows the current I versus phase θ2 for different
Rabi frequencies �1, where θ1 = 0, � = 0, t0 = 2.0,
and �2 = 5.0. The steady state current exhibits oscillations
with the phase θ2 and reaches its minimum value at the point
θ2 = kπ (k = 0,±1,±2 . . .). With the increase of �1 from
zero to �2, the minimum value of current decreases gradually
until it goes down to zero when �1 = �2 = �. I = 0 occurs
when the electron is trapped into a coherent superposition of
the two ground states |1〉 and |2〉 that decoupled from the light.
It is convenient to work in an ‘uncoupled state’ representation:
|B〉 = 1√

2
(eiθ1 |1〉+eiθ2 |2〉), |D〉 = 1√

2
(e−iθ2 |1〉−e−iθ1 |2〉), and

|3〉. In this basis, the Hamiltonian HI1 + HI2 in the rotating
frame of the laser frequency ω2 becomes

HI1 + HI2 = �√
2
(|B〉〈3| + |3〉〈B|)

+ t0 cos(θ1 − θ2)(|B〉〈B| − |D〉〈D|)
+ t0

2
(e−2iθ1 − e−2iθ2)|B〉〈D| + t0

2
(e2iθ1 − e2iθ2)|D〉〈B|.

(20)

It is now apparent that if θ2 = θ1 + kπ(k = 0,±1,±2 · · ·),
the last two terms of the above Hamiltonian are equal to zero.
Therefore in the condition of θ2 = θ1+kπ(k = 0,±1,±2 · · ·),
only |B〉 couples to the light and excitation of the electron from
|B〉 to the excited state |3〉 with a subsequent decay into |B〉
and |D〉 gradually pumps all the population into |D〉. The
reason is that the electron in the state |D〉 is decoupled from
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the light and cannot be excited again. That is to say, in the
long time limit, we will find that the electron can be trapped
in two different superposition states, the so-called dark states,
depending on the relative phases θ1 and θ2. One is the state
of 1√

2
(|1〉 − |2〉) for θ1 = θ2 = 0, the other is the state of

1√
2
(|1〉 + |2〉) for θ1 = 0 and θ2 = ±π as shown by a solid

line in figure 5(a). It has been found that atomic dark states are
extraordinary stable against a number of perturbations. In the
case of quantum dots, a trapped electron cannot tunnel out of
the coherent superposition of two ground states. Moreover, this
superposition is protected from incoming electrons because
of a Coulomb blockade. In this case, the effect as a sudden
appearance of I = 0 can be used as an optically controlled
current switch. Brandes et al [11] have pointed out that the dark
resonance effect(i.e. the effect of I = 0) appears for δR = 0
and the Raman detuning δR = 0 is defined as δR = ε2 − ε1.
Different from [11], in our system the current can be tuned
to zero by choosing appropriate relative phases θ1 and θ2 as
discussed above. Furthermore, we must point out that the
physical reason for the sudden appearance of I = 0 here
is completely different from the reason for the current peak
disappearing and the corresponding current is nearly equal
to zero, as discussed in section 3.1. For μR < ε2 < ε3,
due to the complete destructive interference between the two
transition channels, the electron is trapped into the ground state
of the left QD and the current peak disappears. In contrast, for
ε2 < μR < ε3, the appearance of I = 0 is because the electron
is trapped into a dark state that decoupled from the light.

We also discuss I as a function of phase θ2 for various
energy differences � as shown in figure 5(b). Here we have
chosen θ1 = 0, t0 = 2.0, �1 = 3.0, and �2 = 5.0. For
�1 �= �2, the energy difference �, which can be controlled by
the external gate voltage, can be used to change the modulation
of the phase on the current. The current can reach its minimum
value at the point of θ2 = 0 and the minimum value of I can
be expressed as

Imin = 4t2
0 (�2

1−�2
2)

2
{ f (t0,�1,�2) + 256�t3
0 �1�2

+ 32�t0(�1 + �2)(2�t0 − �1�2)}−1. (21)

From the expression of Imin, the value of Imin decreases with
the increase of energy difference � as shown in figure 5(b).

In figure 6 we illustrate the curves of the Rabi-frequency-
dependent current. For θ1 = 0, θ2 = π , � = 0, and
�1 = �2 = �, the current can be written as

I = 2t2
0 �2


(�2 + 3t2
0 )2 + 7t4

0 + 4
2t2
0

. (22)

It is found that the current increases with the increase of

� in the regime of � <

√
2t0

√
4t2

0 + 
2 and reaches its

maximum value
4t0

√
4t2

0 +
2


(2
√

4t2
0 +
2+3t0)2+7t2

0 +4
2
at the point of � =

√
2t0

√
4t2

0 + 
2. After reaching its maximum, I decreases

sharply as shown in figure 6(a). Figure 6(b) illustrates the
dependence of the current on the Rabi frequency � for the
different asymmetry r(= �1

�2
), where t0 = 5.0, �2 = �,

Figure 6. (a) Dependence of the current I on Rabi frequency � for
different tunneling strengths t0 with �1 = �2 = �. (b) Dependence
of the current I on Rabi frequency � for different Rabi frequencies
�1 with �1 = r�2 = r� and t0 = 5.0. Other parameters θ1 = 0,
θ2 = π

2 , � = 0.0, are the same in the two figures. All coefficients are
scaled with 
.

�1 = r�, and other parameters are the same as those in
figure 6(a). In this condition, the current can be expressed as

I = 4(1 + r 2)t2
0 �2


[�2(1 + r 2) + 6t2
0 ]2 + 16t2

0 
2 + 28t4
0

, (23)

the maximum value of which is at the point of � =
2

√
t0
√


2+4t2
0

1+r2 . For t0 = 5.0, and r = 0.0, 0.5, 0.8, 1.0, the

locations of the maximum value of current I are respectively
at � 	 14.0, 12.7, 11.0, and 10.0. And the current
maximum values are the same and equal to 0.1424 for different
asymmetry r as shown in figure 6(b).

4. Conclusion

In conclusion, we have studied the coherent field phase control
of transport through an effective closed three-level structure
in an asymmetric double quantum dots system. It is shown
that the current spectrum can be sensitively modulated by the
relative phases of the laser fields, which indicates a quantum
interference similar to the magnetic flux controlled coherent
transport in an AB ring interferometer. The results are
separately discussed in two different transport regimes, with
respect to the location of the chemical potential μR. In the
regime of μR < ε2, we discuss the phase modulation on the
current for energy difference �. It is shown that the two-peak
structure appears and the location and height of the current
peak can be modulated by choosing different relative phases
θ1 and θ2. Importantly, the peak of the current can be tuned
to nearly zero because the electron is nearly trapped into the
ground state of the left QD, due to a complete destructive
interference determined by relative phases θ1 and θ2. This
effect can serve as an optically phase controlled current switch.
In the other regime of ε2 < μR < ε3, we find that the two
coupled quantum dots can be trapped into a dark state |D〉 =

1√
2
(e−iθ2 |1〉 − e−iθ1 |2〉), which is decoupled from the light, and

7
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here we choose �1 = �2. That the electron is trapped in a
decoupled coherent superposition corresponds to the effect of
the current disappearance. Due to its easier manoeuvrability,
the laser phase controlled coherent transport provides another
feasible mode and a potential application in nanoelectronics.
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Appendix

Here we give the concrete methods to adiabatically eliminate
the level |4〉. The Hamiltonian HL1, in the interaction picture
through the unitary transformation exp[iHDt], is given by

H̃L1 = t2|4〉〈3|ei�43t + �′
1

2
|4〉〈1|e−i(ω1t+�14t+θ1) + h.c., (A.1)

where �i j = εi − ε j (i �= j = 1, 2, 3, 4). In the limit
when |ω1 − �41| � �1 and the coupling strength V4k �
Vik (i = 1, 2, 3), the Hamiltonian H̃L1 consists of highly
oscillating terms and to a good approximation we finally obtain
the effective Hamiltonian H̃ ′

L1
= −iH̃L1(t)

∫
H̃L1(t

′)dt ′ [37],
given by

H̃ ′
L1

= �1

2
|3〉〈1|e−i(ω1t+θ1)ei�31t + h.c., (A.2)

where �1 = �′
1t2/�34 is the effective coupling constant. Then

the Hamiltonian H̃ ′
L1

, in the Schrödinger picture through the
unitary transformation exp[−iHDt], is given by

H ′
L1

= �1

2
|3〉〈1|e−i(ω1 t+θ1) + h.c. (A.3)

That is to say, in the limit of |ω1 − �41|� �1, the two-step
electron transition |1〉 ↔ |4〉 ↔ |3〉 can be effectively treated
as a transition between |1〉 and |3〉.
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